$NHCOR²$

Palladium-Catalyzed Ortho-Alkoxylation of Anilides via C−H Activation

Tao-Shan Jiang and Guan-Wu Wang*

CAS Key Laboratory of Soft Matter Chemistr[y,](#page-4-0) Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China

S Supporting Information

[AB](#page-4-0)STRACT: [A palladium](#page-4-0)-catalyzed ortho-alkoxylation of anilides with both primary and secondary alcohols via liganddirected C−H activation has been explored. This alkoxylation promoted by catalytic methanesulfonic acid proceeds well at room temperature in most cases and affords aryl alkyl ethers in moderate to good yields.

+ ROH CH₃SO₃H, rt, 24 h 22 examples R^2 : Me, t-Bu, Ph 1^o & 2^o alcohols up to 77% yield

ENTRODUCTION

Aryl alkyl ethers are important motifs in many natural products and pharmaceuticals.¹ For their preparation, C−O bondforming reactions catalyzed by transition metals such as $copper²$ and palladi[um](#page-4-0)³ as well as other methods⁴ become effective strategies. Early studies on the palladium-catalyzed acetox[yl](#page-4-0)ation of arenes [un](#page-4-0)der strong oxidants represe[n](#page-4-0)t seminal works in C−H oxygenation.⁵ Over the past decade, numerous endeavors have been focused on the palladium-catalyzed C−H functionalizations with the [a](#page-4-0)id of directing groups by many groups including Sanford, 6 Daugulis, 7 Yu, 8 and others.⁹ In this area, the C−H oxygenation reaction developed by the groups of Sanford¹⁰ and Yu¹¹ repre[se](#page-4-0)nts a crit[ic](#page-4-0)al a[dv](#page-4-0)ance in C[−](#page-4-0)O bond formation reactions. Despite the success of other C−H oxygen[atio](#page-5-0)n met[ho](#page-5-0)ds,12,13 C−H alkoxylation reactions remain relatively scarce and are limited to the ligand-directed orthoalkoxylation mainly us[ing M](#page-5-0)eOH or EtOH.^{10a,d,12c} Alkoxylation with secondary alcohols and at ambient temperature is still a challenging task. Some potential difficulti[es may](#page-5-0) be encountered in alkoxylations with alcohols. First, the in situ formed palladium alkoxide (Pd−OR) species would weaken the electrophilicity of $Pd(II)$ if alcohols were used. Second, $Pd(II)$ is known to oxidize primary and secondary alcohols.¹⁴ Third, strong oxidants $(PhI(OAc)₂, K₂S₂O₈, Oxone)$ and high temperature used in these reactions limit the reactio[n](#page-5-0) scopes. Despite these difficulties, we set forth to develop a more mild and efficient C−H alkoxylation reaction, particularly with secondary alcohols as well as other primary alcohols.

We have recently reported the palladium-catalyzed orthoalkoxylation of N-methoxybenzamides.^{12c} When acetanilide was chosen as the substrate, in which the NHCOCH₃ moiety was the directing group, only poor yield $(\leq 31\%)$ was obtained for the methoxylation reaction. We reasoned that the efficiency and scope of the reaction would be improved after further condition optimization. Herein, we disclose the Pd-catalyzed alkoxylation of acetanilides with both primary and secondary alcohols under mild conditions.¹⁵

■ RESULTS AND DISCUSSION

NHCOR 2

To overcome the low efficiency of our previous orthomethoxylation of acetanilide,^{12c} we searched for better reaction conditions. The large beneficial effect of p-toluenesulfonic acid (PTSA) in promoting th[e P](#page-5-0)d-catalyzed C−H activation reaction of anilides was first revealed by de Vries, van Leeuwen, and co-workers in 2002.¹⁶ Inspired by this discovery, we initially tested the reaction by using 10 mol % of $Pd(OAc)₂$, 2 equiv [of](#page-5-0) $K_2S_2O_8$, 0.5 equiv of PTSA, and 50 equiv of MeOH in 2 mL of dioxane for 24 h at room temperature, and the desired product 2a was obtained in 12% yield (Table 1, entry 1). To our delight, when methanesulfonic acid, a stronger organic acid, was employed, the methoxylated product could [b](#page-1-0)e obtained in 25% yield (Table 1, entry 2). Other solvents including 1,2 dichloroethane (DCE), 1,2-dimethoxyethane (DME), and dichloromethane ([D](#page-1-0)CM) were screened, the best yield was 42% in DME (Table 1, entries 3−5). Compared with $(NH_4)_2S_2O_8$ and Oxone, $K_2S_2O_8$ was better (Table 1, entries 6 and 7 vs entry 4). It is [n](#page-1-0)oteworthy that the yield could be increased dramatically to 62% when 15 equiv of $CH₃OH$ was employed (Table 1, entry 8). The yield of 2a could be further improved to 64% when only 10 equiv of $CH₃OH$ was used (Table 1, entry 9[\).](#page-1-0) However, the yield dropped to 59% from 64% if the amount of $CH₃OH$ was reduced to 5 equiv (Table 1, entry 1[0](#page-1-0) vs entry 9). Interestingly, decreasing the amount of $CH₃SO₃H$ to 0.2 equiv could give a better result, and a yield [of](#page-1-0) 68% was achieved (Table 1, entries 11−13). Nevertheless, the usage of CF_3SO_3H as the additive, which is a stronger organic acid and has played an i[mp](#page-1-0)ortant role on palladium-catalyzed ligand-directed C−H activation,¹⁷ did not improve the efficiency in our catalytic system (Table 1, entry 14). The desired product was not obtain[ed](#page-5-0) in the absence of the $Pd(OAc)₂$ catalyst (Table 1, entry 15). Fina[lly](#page-1-0), when 0.3 mmol of 1a, 10 mol % of $Pd(OAc)_{2}$, 0.2 equiv of CH_3SO_3H , and 2 equiv of $K_2S_2O_8$ were used[, t](#page-1-0)he reaction at ambient temperature

Received: September 12, 2012 Published: October 1, 2012

Table 1. Screening Conditions for the $Pd(OAc)₂$ -Catalyzed Direct Ortho-Methoxylation of Acetanilide^a

NHAc 1a		MeOH	Pd(OAc) ₂ , oxidant additive, solvent rt, 24 h		NHAc OMe 2a	
entry	CH ₃ OH (equiv)	additive (equiv)	oxidant	solvent	yield (%)	
$\mathbf{1}$	50	PTSA (0.5)	$K_2S_2O_8$	dioxane	12	
$\overline{2}$	50	CH ₃ SO ₃ H (0.5)	$K_2S_2O_8$	dioxane	25	
3	50	CH ₃ SO ₃ H (0.5)	$K_2S_2O_8$	DCE	21	
$\overline{4}$	50	CH ₃ SO ₃ H (0.5)	$K_2S_2O_8$	DME	42	
5	50	CH ₃ SO ₃ H (0.5)	$K_2S_2O_8$	DCM	15	
6	50	CH ₃ SO ₃ H (0.5)	$(NH_4)_{2}S_{2}O_8$	DME	29	
7	50	CH ₃ SO ₃ H (0.5)	Oxone	DME	37	
8	15	CH ₃ SO ₃ H (0.5)	$K_2S_2O_8$	DME	62	
9	10	CH ₃ SO ₃ H (0.5)	$K_2S_2O_8$	DME	64	
10	5	CH ₃ SO ₃ H (0.5)	$K_2S_2O_8$	DME	59	
11	10	CH ₃ SO ₃ H (0.3)	$K_2S_2O_8$	DME	67	
12	10	CH ₃ SO ₃ H (0.2)	$K_2S_2O_8$	DME	68	
13	10	CH ₃ SO ₃ H (0.1)	$K_2S_2O_8$	DME	65	
14	10	CF ₃ SO ₃ H (0.2)	$K_2S_2O_8$	DME	54	
15^b	10	CH ₃ SO ₃ H (0.2)	$K_2S_2O_8$	DME	0	
16^c	10	CH ₃ SO ₃ H (0.2)	$K_2S_2O_8$	DME	66	

a Unless otherwise specified, all the reactions were carried out with 0.2 mmol of 1a, 0.02 mmol of $Pd(OAc)_{2}$, and 0.4 mmol of oxidant in 2 mL of solvent at room temperature for 24 h. b The reaction was performed in the absence of $Pd(OAc)_2$. ^c0.3 mmol of 1a, 0.03 mmol of $Pd(OAc)₂$, and 0.6 mmol of oxidant were used.

for 24 h gave 2a in 66%, comparable to 0.2 mmol scale (Table 1, entry 16 vs entry 12).

With the optimal conditions in hand (Table 1, entry 16), we next investigated the scope of this reaction. As summarized in Table 2, a variety of anilides with either electron-donating or electron-withdrawing groups on the phenyl ring could be applied to afford the desired alkoxylated products (2a−v). We first conducted the alkoxylation reaction with primary alcohols. Methoxylated and ethoxylated products 2a−e could be obtained in 45−74% yields by employing 10 equiv of MeOH and EtOH. For the substrate with the electron-withdrawing chorine group, increasing the reaction temperature from room temperature to 60 °C was required. We found that the roomtemperature reaction could be extended to other primary alcohols such as n -PrOH, n -BuOH, and MeOCH₂CH₂OH, and the corresponding alkoxylated products 2f−h were obtained in 37−69% yields although a larger amount (1 mL) of alcohols was demanded. 2-Chloroethanol, a halogenated alcohol, could also be employed to provide 2i in 38% yield. Generally, primary alcohols bearing a longer alkyl chain afforded lower yields (2b, 2e, and 2f vs 2g and 2h). Intriguingly, alkoxylation of anilides using 1 mL of secondary alcohols proceeded well in this

Table 2. Pd-Catalyzed Directed Ortho-Alkoxylation of Anilides^a

$$
R^1 \xrightarrow{\text{NHR}^2} + \text{ROH} \xrightarrow{\text{Pd(OAc)}_2 (10 \text{ mol\%})} R^1 \xrightarrow{\text{NHR}^2} R^1 \xrightarrow{\text{NHR}^2} R^2 \xrightarrow{\text{NHR}^2} R^3 \xrightarrow{\text{NHR}^2} R^4 \xrightarrow{\text{NHR}^2} R^4 \xrightarrow{\text{NHR}^2} R^5
$$

a Unless otherwise specified, all the reactions were carried out with 0.3 mmol of 1, 0.03 mmol of $Pd(OAc)_{2}$, 0.6 mmol of oxidant, and 0.06 mmol of CH_3SO_3H in 2 mL of solvent at 25 $^{\circ}$ C for 24 h. $^{b}10$ equiv of alcohol was used. The reaction was performed at 60° C. d_1 mL of alcohol was used. ${}^eC\text{F}_3\text{SO}_3\text{H}$ was used instead of $CH_3SO_3\text{H}$.

catalytic system and afforded 2j−r in 36−77% yields. The electronic property and position of substituents on the phenyl ring exhibited significant effects on the reactivity. For example, alkoxylation of acetanilide bearing a methyl group at the meta position of the phenyl ring with i-PrOH was more efficient and afforded a higher yield $(77\% \text{ for } 2k)$ than those for the unsubstituted and substituted substrates (36−55% for 2j and 2l−o). Other commonly used secondary alcohols including 2 butanol (s-BuOH), cyclohexanol (c-HexOH), and cyclopentanol (c-PenOH) could be employed and afforded the desired products in 63−71% yields (2p−r). To further expand the substrate scope, we performed the reactions of anilides bearing other directing groups, i.e., $N-(m\text{-}tolyl)$ pivalamide $(1h)$ and $N-(m$ -tolyl)benzamide (1i), with MeOH and i-PrOH, respectively. Although desired products (2s−v) could be obtained, their yields (49−69%) were lower than those for the corresponding methoxylation and isopropoxylation of N-mtolylacetamide (1b) (2s−v vs 2b and 2k). Unfortunately, tertiary alcohols such as t-BuOH failed to react with acetanilide under otherwise identical conditions. It should be pointed out that the alkoxylation of acetanilides gave exclusively one regioisomer, and trace or no dialkoxylation was observed. The reason for the low yields of some products was that the starting material could not be consumed completely even after longer reaction time. It is somewhat surprising that the electron-rich acetanilide bearing a methoxyl group at the metaposition afforded only a trace amount of the desired crosscoupling product; instead, the oxidative C−H homocoupling product 3 was obtained in 58% yield (Scheme 1).¹⁸

Scheme 1. Homocoupling Reaction of N-(3- Methoxyphenyl)acetamide

Based on the previous literature, $6,10,12c$ a possible mechanism for the alkoxylation of acetanilides is outlined in Scheme 2. We believe that the role of methanesul[fo](#page-4-0)[nic a](#page-5-0)cid may be 2-fold: (1) compared to PTSA, CH_3SO_3H is a stronger acid and it will generate more electrophilic Pd(II) species toward C−H activation. The palladacycle A, which resembles that reported by Yu,¹⁹ is formed with two $CH_3SO_3^-$ anions bridging two Pd(II). In this system, *m*-methoxyl-substituted anilide mainly affords [o](#page-5-0)xidative C−H homocoupling product; this phenomenon is similar to that reported by Sanford^{18a} and Greaney^{18b} for the electron-neutral and electron-rich arenes. (2) Palladacycle A can be easily substituted by an [al](#page-5-0)cohol to aff[ord](#page-5-0) intermediate **B** since the $CH_3SO_3^-$ anion is a good leaving group. $Pd(IV)$ complex C is formed by the oxidation of $K_2S_2O_8$; subsequent reduction elimination affords the alkoxylated product along with the regeneration of the Pd(II) species. It should be noted that a mechanism involving a recently formulated bimetallic $Pd(II)/Pd(III)$ pathway by Ritter²⁰ or $Pd(II)/Pd(0)$ process proposed by Sunoj²¹ cannot be excluded.

Scheme 2. Proposed Mechanism for the C−H Alkoxylation Reaction

■ CONCLUSION

In summary, we have successfully accomplished the intermolecular ortho C−H alkoxylation of anilides with primary or secondary alcohols under mild conditions and found that methanesulfonic acid was crucial for the success of this transformation. We believe that methanesulfonic acid not only promotes the C−H functionalization but also serves as a good leaving group, which can be easily substituted by an alcohol. The final products could be further transformed into various useful derivatives.

EXPERIMENTAL SECTION

General Procedure for the Direct Ortho-Alkoxylation of Acetanilides. A mixture of acetanilide 1 (0.3 mmol, 1 equiv), $Pd(OAc)_2$ (0.03 mmol, 0.1 equiv), $K_2S_2O_8$ (0.6 mmol, 2 equiv), alcohol (3.0 mmol, 10 equiv; or 1 mL), $CH₃SO₃H$ (0.06 mmol, 0.2 equiv), and 1,2-dimethoxyethane (2 mL) was stirred at 25 °C (or 60 °C in a few cases) (see Table 2) for 24 h. After the reaction was complete, the mixture was filtered by a silica gel plug with ethyl acetate as the eluent and evaporated in vacuum. The residue was purified by flash column chromatography o[n](#page-1-0) a silica gel using petroleum ether/ EtOAc (3:1 to 5:1) as the eluent to give product 2.

 $N-(2-Methoxyphenyl)acetami de (2a).²² By following the$ general procedure, the reaction of 1a (40.6 mg, 0.3 mmol) with $\rm CH_3OH$ (122 µL, 3.0 mol) at 25 °C gave 2a ([32.](#page-5-0)7 mg, 66% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.35 (dd, J = 8.0 Hz, J = 1.2 Hz, 1H), 7.75 $(br, 1H)$, 7.03 (td, J = 8.0 Hz, J = 1.2 Hz, 1H), 6.96 (td, J = 8.0 Hz, J = 1.2 Hz, 1H), 6.87 (dd, $J = 8.0$ Hz, $J = 1.2$ Hz, 1H), 3.88 (s, 3H), 2.20 (s, 3H).

 $N-(2-Methoxy-5-methylphenyl)$ acetamide (2b).²³ By following the general procedure, the reaction of 1b (44.8 mg, 0.3 mmol) with $CH₃OH$ (122 μ L, 3.0 mol) at 25 °C gave 2b (39.8 mg, [74%](#page-5-0) yield): ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 1.2 Hz, 1H), 7.72 (br, 1H), 6.82 (dd, J = 8.4 Hz, J = 1.2 Hz, 1H), 6.75 (d, J = 8.4 Hz, 1H), 3.84 (s, 3H), 2.29 (s, 3H), 2.19 (s, 3H).

N-(4-Chloro-2-methoxyphenyl)acetamide (2c). By following the general procedure, the reaction of 1c (50.9 mg, 0.3 mmol) with CH₃OH (122 μ L, 3.0 mol) at 60 °C afforded 2c (27.0 mg, 45% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 8.8 Hz, 1H), 7.66 (br, 1H), 6.93 (dd, $J = 8.8$ Hz, $J = 2.4$ Hz, 1H), 6.85 (d, $J = 2.4$ Hz, 1H), 3.88 (s, 3H), 2.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 148.2, 128.4, 126.4, 120.9, 120.4, 110.7, 55.9, 24.8; IR (KBr) ν 3295, 2959, 2921, 1669, 1596, 1528, 1488, 1400, 1250, 1122, 1022, 875, 813

cm⁻¹; HRMS (ESI-Orbitrap) m/z [M + H⁺] calcd for C₉H₁₁O₂N³⁵Cl 200.0473, found 200.0472.

 $N-(2-Ethoxyphenyl)acetamide (2d).²⁴ By following the general$ procedure, the reaction of 1a (40.6 mg, 0.3 mmol) with C_2H_5OH (175 μ L, 3.0 mol) at 25 °C gave 2d (28.5 mg[, 53](#page-5-0)% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.35 (dd, J = 8.0 Hz, J = 1.2 Hz, 1H), 7.78 (br, 1H), 7.01 (td, $J = 8.0$ Hz, $J = 1.2$ Hz, 1H), 6.94 (td, $J = 8.0$ Hz, $J = 1.2$ Hz, 1H), 6.85 (dd, $J = 8.0$ Hz, $J = 1.2$ Hz, 1H), 4.10 (q, $J = 6.9$ Hz, 2H), 2.20 (s, 3H), 1.45 (t, $J = 6.9$ Hz, 3H).

N-(2-Ethoxy-5-methylphenyl)acetamide (2e). By following the general procedure, the reaction of 1b (44.8 mg, 0.3 mmol) with C_2H_5OH (175 μ L, 3.0 mol) at 25 °C provided 2e (40.6 mg, 70% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 7.73 (br, 1H), 6.80 (d, J = 8.0 Hz, 1H), 6.74 (d, J = 8.0 Hz, 1H), 4.07 (q, J = 6.9 Hz, 2H), 2.29 (s, 3H), 2.19 (s, 3H), 1.44 (t, J = 6.9 Hz, 3H); 13C NMR $(100 \text{ MHz}, \text{CDCl}_3)$ δ 168.0, 144.8, 130.5, 127.6, 123.7, 120.4, 110.8, 64.3, 25.0, 20.9, 14.9; IR (KBr) ν 3327, 2986, 2929, 1669, 1540, 1470, 1392, 1371, 1254, 1227, 1130, 1043, 914, 881, 795, 735, 682, 609, 530 cm⁻¹; HRMS (ESI-Orbitrap) m/z [M + H⁺] Calcd for C₁₁H₁₆O₂N 194.1176, found 194.1174.

N-(5-Methyl-2-propoxyphenyl)acetamide (2f). By following the general procedure, the reaction of 1 \bf{b} (44.8 mg, 0.3 mmol) with *n*-PrOH (1 mL) at 25 °C provided 2f (42.9 mg, 69% yield): ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3)$ δ 8.19 (s, 1H), 7.73 (br, 1H), 6.80 (d, J = 8.0 Hz, 1H), 6.75 (d, $J = 8.0$ Hz, 1H), 3.96 (t, $J = 6.6$ Hz, 2H), 2.29 (s, 3H), 2.19 (s, 3H), 1.88−1.79 (m, 2H), 1.05 (t, J = 7.4 Hz, 3H); 13C NMR $(100 \text{ MHz}, \text{CDCl}_3)$ δ 168.0, 145.0, 130.5, 127.6, 123.8, 120.4, 110.9, 70.3, 24.9, 22.6, 21.0, 10.5; IR (KBr) ν 3342, 2970, 2919, 1669, 1594, 1538, 1489, 1458, 1254, 1226, 1130, 1068, 979, 879, 797, 667, 605 cm⁻¹; HRMS (ESI-Orbitrap) m/z [M + H⁺] calcd for C₁₂H₁₈O₂N 208.1332, found 208.1335.

N-(2-Butoxy-5-methylphenyl)acetamide (2g). By following the general procedure, the reaction of 1b (44.8 mg, 0.3 mmol) with n-BuOH (1 mL) at 25 °C gave 2g (33.9 mg, 51% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 7.73 (br, 1H), 6.80 (dd, J = 8.4 Hz, J = 1.2 Hz, 1H), 6.75 (d, $I = 8.4$ Hz, 1H), 4.00 (t, $I = 6.6$ Hz, 2H), 2.29 (s, 3H), 2.18 (s, 3H), 1.83−1.76 (m, 2H), 1.54−1.45 (m, 2H), 1.00 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 145.0, 130.4, 127.6, 123.7, 120.3, 110.9, 68.5, 31.2, 24.9, 20.9, 19.3, 13.8; IR (KBr) ν 3312, 2957, 2925, 1663, 1593, 1544, 1492, 1462, 1374, 1259, 1226, 1133, 1023, 808 cm⁻¹; HRMS (ESI-Orbitrap) m/z [M + H⁺] calcd for $C_{13}H_{20}O_2N$ 222.1489, found 222.1488.

N-(2-(2-Methoxyethoxy)-5-methylphenyl)acetamide (2h). By following the general procedure, the reaction of 1b (44.8 mg, 0.3 mmol) with $MeOCH_2CH_2OH$ (1 mL) at 25 °C gave 2h (24.8 mg, 37% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 8.16 (br, 1H), 6.83 (d, $J = 8.0$ Hz, 1H), 6.79 (dd, $J = 8.0$ Hz, $J = 1.2$ Hz, 1H), 4.13−4.11 (m, 2H), 3.70−3.68 (m, 2H), 3.46 (s, 3H), 2.30 (s, 3H), 2.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 144.8, 132.4, 129.5, 123.9, 120.6, 114.8, 70.9, 70.3, 59.0, 24.8, 21.1; IR (KBr) ν 3303, 2924, 1666, 1613, 1552, 1488, 1449, 1431, 1371, 1302, 1260, 783, 694 cm⁻¹; HRMS (ESI-Orbitrap) m/z [M + H⁺] calcd for $C_{12}H_{18}O_3N$ 224.1281, found 224.1280.

 $N-(2-(2-Chloroethoxy)-5-methylphenyl)acetamide (2i). By$ following the general procedure, the reaction of 1b (44.8 mg, 0.3 mmol) with 2-chloroethanol (201 μL, 3.0 mol) at 25 °C provided 2i (26.0 mg, 38% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 7.89 (br, 1H), 6.81 (dd, J = 8.4 Hz, J = 1.2 Hz, 1H), 6.78 (d, J = 8.0 Hz, 1H), 4.27−4.24 (m, 2H), 3.85−3.82 (m, 2H), 2.30 (s, 3H), 2.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 154.2, 144.1, 132.3, 123.9, 120.7, 113.0, 69.8, 42.6, 24.9, 21.1; IR (KBr) ν 3407, 2922, 1677, 1598, 1540, 1484, 1327, 1294, 1253, 1220, 1132, 1078, 1034, 886, 805, 664, 599, 540 cm⁻¹; HRMS (ESI-Orbitrap) *m*/z [M + H⁺] calcd for $C_{11}H_{15}O_2N^{35}$ Cl 228.0786, found 228.0782.

N-(2-Isopropoxyphenyl)acetamide (2j). By following the general procedure, the reaction of 1a (40.6 mg, 0.3 mmol) with i-PrOH (1 mL) at 25 °C gave 2j (31.9 mg, 55% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.36 (dd, J = 8.0 Hz, J = 1.2 Hz, 1H), 7.79 (br, 1H), 7.00 (td, $J = 8.0$ Hz, $J = 1.2$ Hz, 1H), 6.93 (td, $J = 8.0$ Hz, $J = 1.2$ Hz, 1H), 6.87 (dd, J = 8.0 Hz, J = 1.2 Hz, 1H), 4.59 (heptet, J = 6.0 Hz,

1H), 2.20 (s, 3H), 1.37 (d, J = 6.0 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 168.0, 145.8, 128.6, 123.4, 120.9, 119.8, 112.5, 71.2, 24.9, 22.2 (2C); IR (KBr) ν 3364, 2974, 2931, 1675, 1596, 1536, 1484, 1452, 1369, 1330, 1289, 1254, 1120, 1048, 1007, 950, 751, 649, 591, 540 cm⁻¹; HRMS (ESI-Orbitrap) m/z [M + H⁺] calcd for $\rm C_{11}H_{16}O_2N$ 194.1176, found 194.1173.

N-(2-Isopropoxy-5-methylphenyl)acetamide (2k). By following the general procedure, the reaction of 1b (44.8 mg, 0.3 mmol) with i -PrOH (1 mL) at 25 °C afforded 2k (47.9 mg, 77% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 7.75 (br, 1H), 6.80 (dd, J = 8.8 Hz, $J = 1.2$ Hz, 1H), 6.76 (d, $J = 8.4$ Hz, 1H), 4.53 (heptet, $J = 6.0$ Hz, 1H), 2.29 (s, 3H), 2.18 (s, 3H), 1.35 (d, J = 6.0 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 168.0, 143.7, 130.6, 128.5, 123.8, 120.4, 112.7, 71.5, 24.9, 22.2 (2C), 20.9; IR (KBr) ν 3313, 2980, 2927, 1669, 1590, 1544, 1485, 1374, 1316, 1258, 1224, 1133, 1106, 951, 800, 732, 663, 605, 571, 534 cm⁻¹; HRMS (ESI-Orbitrap) m/z [M + H⁺] calcd for $C_{12}H_{18}O_2N$ 208.1332, found 208.1330.

N-(2-Isopropoxy-4-methylphenyl)acetamide (2l). By following the general procedure, the reaction of 1d (44.8 mg, 0.3 mmol) with *i*-PrOH (1 mL) at 25 °C afforded 21 (29.8 mg, 48% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 8.4 Hz, 1H), 7.69 (br, 1H), 6.73 (d, $J = 8.4$ Hz, 1H), 6.69 (s, 1H), 4.57 (heptet, $J = 6.0$ Hz, 1H), 2.29 (s, 3H), 2.17 (s, 3H), 1.36 (d, $J = 6.0$ Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 145.8, 133.3, 126.1, 121.3, 119.7, 113.5, 71.2, 24.9, 22.2 (2C), 21.3; IR (KBr) ν 3425, 3333, 2979, 2926, 1673, 1603, 1527, 1489, 1452, 1417, 1375, 1329, 1281, 1259, 1128, 1008, 980, 812, 581 cm⁻¹; HRMS (ESI-Orbitrap) m/z [M + H⁺] calcd for C₁₂H₁₈O₂N 208.1332, found 208.1333.

N-(2-Isopropoxy-4,5-dimethylphenyl)acetamide (2m). By following the general procedure, the reaction of 1e (49.0 mg, 0.3 mmol) with i-PrOH (1 mL) at 60 °C provided 2m (33.9 mg, 51% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.65 (br, 1H), 6.67 (s, 1H), 4.52 (heptet, $J = 6.0$ Hz, 1H), 2.19 (s, 6H), 2.17 (s, 3H), 1.34 (d, J = 6.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 144.0, 131.5, 128.9, 126.4, 121.1, 114.7, 71.6, 24.9, 22.3 (2C), 19.7, 19.2; IR (KBr) ν 3424, 3332, 2975, 2926, 1673, 1594, 1527, 1453, 1406, 1375, 1326, 1263, 1202, 1114, 1010, 945, 882 cm⁻¹; HRMS (ESI-Orbitrap) m/z [M + H⁺] calcd for C₁₃H₂₀O₂N 222.1489, found 222.1488.

N-(4-Acetyl-2-isopropoxyphenyl)acetamide (2n). By following the general procedure, the reaction of 1f (53.2 mg, 0.3 mmol) with i -PrOH (1 mL) and CF_3SO_3H (5.3 μ L, 0.06 mmol) replacing $CH₃SO₃H$ at 60 °C afforded 2n (33.9 mg, 48% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, J = 8.4 Hz, 1H), 7.97 (br, 1H), 7.54 (dd, J = 8.4 Hz, J = 2.0 Hz, 1H), 7.52 (d, J = 2.0 Hz, 1H), 4.74 (heptet, J = 6.0 Hz, 1H), 2.57 (s, 3H), 2.24 (s, 3H), 1.40 (d, J = 6.0 Hz, 6H); 13 C NMR (100 MHz, CDCl₃) δ 197.0, 168.4, 145.6, 133.0, 132.3, 122.8, 118.4, 110.7, 71.4, 26.3, 25.0, 22.0 (2C); IR (KBr) ν 3326, 2981, 2930, 1672, 1589, 1524, 1485, 1410, 1367, 1328, 1269, 1236, 1197, 1117, 969, 872, 832, 727, 638, 600 cm⁻¹; HRMS (ESI-Orbitrap) m/z $[M + H^+]$ calcd for $C_{13}H_{18}O_3N$ 236.1281, found 236.1281.

N-(4-Iodo-2-isopropoxyphenyl)acetamide (2o). By following the general procedure, the reaction of $1g(78.3 mg, 0.3 mmol)$ with *i*-PrOH (1 mL) at 60 °C gave 20 (34.5 mg, 36% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 8.4 Hz, 1H), 7.69 (br, 1H), 7.25 (dd, J = 8.4 Hz, $J = 1.6$ Hz, 1H), 7.15 (d, $J = 1.6$ Hz, 1H), 4.56 (heptet, $J = 6.0$ Hz, 1H), 2.19 (s, 3H), 1.37 (d, J = 6.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 146.4, 130.0, 128.5, 121.4, 121.3, 85.9, 71.8, 25.0, 22.0 $(2C)$; IR (KBr) ν 3318, 2983, 2925, 1669, 1587, 1523, 1481, 1395, 1326, 1247, 1209, 1127, 1105, 954, 812 cm⁻¹; HRMS (ESI-Orbitrap) m/z [M + H⁺] calcd for C₁₁H₁₅O₂NI 320.0142, found 320.0142.

N-(2-sec-Butoxy-5-methylphenyl)acetamide (2p). By following the general procedure, the reaction of 1b (44.8 mg, 0.3 mmol) with 2-butyl alcohol (1 mL) at 25 °C provided 2p (46.5 mg, 70% yield): $^1\mathrm{H}$ NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 7.76 (br, 1H), 6.80 (dd, J = 8.4 Hz, $J = 1.2$ Hz, 1H), 6.75 (d, $J = 8.4$ Hz, 1H), 4.30 (sextet, $J = 6.0$ Hz, 1H), 2.29 (s, 3H), 2.18 (s, 3H), 1.81−1.70 (m, 1H), 1.69−1.59 $(m, 1H)$, 1.30 (d, J = 6.0 Hz, 3H), 0.99 (t, J = 7.4 Hz, 3H); ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3)$ δ 167.9, 143.9, 130.6, 128.6, 123.7, 120.4, 112.8, 76.6, 29.2, 24.9, 21.0, 19.4, 9.7. IR (KBr) ν 3425, 3337, 2971, 2930, 1685, 1593, 1533, 1472, 1427, 1373, 1253, 1128, 1026, 992, 917, 802,

599 cm⁻¹; HRMS (ESI-Orbitrap) m/z [M + H⁺] calcd for $C_{13}H_{20}O_2N$ 222.1489, found 222.1490.

 $N-(2-(Cyclohexyloxy)-5-methylphenyl)acetamide (2q). By$ following the general procedure, the reaction of 1b (44.8 mg, 0.3 mmol) with cyclohexanol (1 mL) at 25 °C provided 2q (46.7 mg, 63% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 7.78 (br, 1H), 6.81−6.75 (m, 2H), 4.26−4.19 (m, 1H), 2.29 (s, 3H), 2.18 (s, 3H), 2.01−1.97 (m, 2H), 1.82−1.76 (m, 2H), 1.63−1.34 (m, 6H); 13C NMR (100 MHz, CDCl3) δ 167.9, 143.6, 130.6, 128.7, 123.7, 120.4, 113.0, 76.9, 31.9 (2C), 25.5, 25.0, 23.8 (2C), 21.0; IR (KBr) ν 3422, 3340, 2932, 2857, 1682, 1593, 1532, 1473, 1427, 1368, 1253, 1218, 1127, 1045, 1020, 966, 801, 598 cm⁻¹; HRMS (ESI-Orbitrap) m/z [M $+ H^+$] calcd for $C_{15}H_{22}O_2N$ 248.1645, found 248.1639.

 $N-(2-(Cyclopentyloxy)-5-methylphenyl)acetamide (2r). By$ following the general procedure, the reaction of 1b (44.8 mg, 0.3 mmol) with cyclopentanol (1 mL) at 25 °C afforded 2r (49.7 mg, 71% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 7.69 (br, 1H), 6.79 (dd, J = 8.4 Hz, J = 1.2 Hz, 1H), 6.75 (d, J = 8.4 Hz, 1H), 4.80– 4.75 (m, 1H), 2.29 (s, 3H), 2.17 (s, 3H), 1.93−1.65 (m, 8H); 13C NMR (100 MHz, CDCl₃) δ 167.9, 143.9, 130.3, 128.2, 123.7, 120.3, 112.3, 80.5, 32.9 (2C), 25.0, 24.0 (2C), 20.9; IR (KBr) ν 3424, 3340, 2959, 2945, 1683, 1593, 1534, 1474, 1428, 1366, 1253, 1221, 1168, 1126, 987, 801, 598 cm[−]¹ ; HRMS (ESI-Orbitrap) m/z [M + H+] calcd for C₁₄H₂₀O₂N 234.1489, found 234.1485.

N-(2-Methoxy-5-methylphenyl)pivalamide (2s). By following the general procedure, the reaction of 1h (57.5 mg, 0.3 mmol) with CH₃OH (122 μ L, 3.0 mol) at 25 °C afforded 2s (39.8 mg, 60% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 2.4 Hz, 1H), 8.10 (br, 1H), 6.83−6.80 (m, 1H), 6.75 (d, J = 8.0 Hz, 1H), 3.86 (s, 3H), 2.29 (s, 3H), 1.31 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 176.5, 145.9, 130.6, 127.6, 123.5, 120.2, 109.6, 55.9, 40.0, 27.6, 20.9; IR (KBr) ν 3443, 2960, 1682, 1597, 1533, 1485, 1464, 1427, 1253, 1226, 1169, 1123, 1029, 798 cm⁻¹; HRMS (APCI-Orbitrap) m/z [M + H⁺] calcd for C₁₃H₂₀O₂N 222.1489, found 222.1482.

N-(2-Isopropoxy-5-methylphenyl)pivalamide (2t). By following the general procedure, the reaction of 1h (57.5 mg, 0.3 mmol) with *i*-PrOH (1 mL) at 25 °C provided 2t (51.6 mg, 69% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 8.22 (br, 1H), 6.80–6.76 $(m, 2H)$, 4.52 (heptet, $J = 6.0$ Hz, 1H), 2.28 (s, 3H), 1.35 (d, $J = 6.0$ Hz, 6H), 1.31 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 176.3, 144.1, 130.8, 128.9, 123.5, 120.2, 113.0, 71.8, 40.0, 27.6, 22.3, 21.0; IR (KBr) ν 3438, 2974, 2929, 1683, 1595, 1533, 1480, 1428, 1251, 1218, 1178, 1120, 1106, 960, 921, 803, 624 cm⁻¹; HRMS (APCI-Orbitrap) m/z $[M + H^+]$ calcd for $C_{15}H_{24}O_2N$ 250.1802, found 250.1796.

N-(2-Methoxy-5-methylphenyl)benzamide (2u). By following the general procedure, the reaction of 1i (63.4 mg, 0.3 mmol) with CH₃OH (122 μ L, 3.0 mol) at 25 °C afforded 2u (35.5 mg, 49% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.53 (br, 1H), 8.39 (d, J = 2.0 Hz, 1H), 7.91−7.88 (m, 2H), 7.57−7.53 (m, 1H), 7.52−7.48 (m, 2H), 6.88 (dd, J = 8.4 Hz, 2.0 Hz, 1H), 6.81 (d, J = 8.4 Hz, 1H), 3.90 (s, 3H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 146.1, 135.4, 131.6, 130.7, 128.7, 127.5, 127.0, 124.0, 120.5, 109.8, 55.9, 21.0; IR (KBr) ν 3428, 2922, 1675, 1596, 1534, 1478, 1427, 1252, 1224, 1139, 1028, 799, 707 cm⁻¹; HRMS (APCI-Orbitrap) m/z [M + H⁺] calcd for $C_{15}H_{16}O_2N$ 242.1176, found 242.1169.

N-(2-Isopropoxy-5-methylphenyl)benzamide (2v). By following the general procedure, the reaction of 1i (63.4 mg, 0.3 mmol) with i -PrOH (1 mL) at 25 °C provided 2v (45.3 mg, 56% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.66 (br, 1H), 8.42 (d, \dot{J} = 1.6 Hz, 1H), 7.91– 7.88 (m, 2H), 7.58−7.54 (m, 1H), 7.53−7.49 (m, 2H), 6.86 (dd, J = 8.4 Hz, 2.0 Hz, 1H), 6.82 (d, J = 8.4 Hz, 1H), 4.58 (heptet, J = 6.0 Hz, 1H), 2.35 (s, 3H), 1.39 (d, $J = 6.0$ Hz, 1H); ¹³C NMR (100 MHz, CDCl3) δ 164.8, 144.2, 135.4, 131.6, 130.8, 128.8, 128.7, 126.9, 124.0, 120.4, 112.8, 71.7, 22.3, 21.0; IR (KBr) ν 3426, 2976, 2925, 1676, 1594, 1533, 1472, 1428, 1249, 1136, 1111, 959, 798, 706 cm[−]¹ ; HRMS (APCI-Orbitrap) m/z [M + H⁺] calcd for C₁₇H₂₀O₂N 270.1489, found 270.1482.

N,N′-(4,4′-Dimethoxy[1,1′-biphenyl]-2,2′-diyl)diacetamide (3). A mixture of N-(3-methoxyphenyl)acetamide (49.6 mg, 0.3 mmol), Pd(OAc)₂ (6.7 mg, 0.03 mmol), K₂S₂O₈ (162.0 mg, 0.6 mmol), CH₃OH (122 μ L, 3.0 mmol), CH₃SO₃H (3.9 μ L, 0.06 mmol), and 1,2-dimethoxyethane (2 mL) was stirred at 25 °C for 24 h. After the reaction was complete, the mixture was filtered by a silica gel plug with ethyl acetate as the eluent and evaporated in vacuum. The residue was purified by flash column chromatography on a silica gel using EtOAc as the eluent to give product 3 (28.7 mg, 58% yield): $^{\mathrm{i}}\mathrm{H}$ NMR $(400 \text{ MHz}, \text{CDCl}_3)$ δ 7.88 (d, J = 2.8 Hz, 2H), 7.08 (d, J = 8.4 Hz, 2H), 6.88 (br, 2H), 6.77 (dd, J = 8.4 Hz, J = 2.8 Hz, 2H), 3.87 (s, 6H), 1.98 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 160.2, 137.0, 131.5, 119.6, 111.3, 107.4, 55.5, 24.5; IR (KBr) ν 3378, 3272, 2963, 1674, 1610, 1580, 1531, 1460, 1423, 1370, 1300, 1254, 1194, 1163, 1126, 1052, 871, 805, 734, 628 cm[−]¹ ; HRMS (ESI-Orbitrap) m/z [M + H⁺] calcd for $C_{18}H_{21}O_4N_2$ 329.1496, found 329.1494.

■ ASSOCIATED CONTENT

8 Supporting Information

NMR spectra of products 2a−v and 3. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: gwang@ustc.edu.cn.

Notes

The auth[ors declare no com](mailto:gwang@ustc.edu.cn)peting financial interest.

■ ACKNOWLEDGMENTS

We are grateful for financial support from the National Natural Science Foundation of China (Nos. 91021004), National Basic Research Program of China (2011CB921402), and the Key Project of Science and Technology of the Department of Education, Anhui Province, China (KJ2010ZD05).

■ REFERENCES

(1) (a) Buckingham, J. Dictionary of Natural Products; University Press: Cambridge, MA, 1994. (b) Roughley, S. D.; Jordan, A. M. J. Med. Chem. 2011, 54, 3451.

(2) For selected examples of Cu-catalyzed C−O cross couplings, see: (a) Marcoux, J.-F.; Doye, S.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 10539. (b) Wolter, M.; Nordmann, G.; Job, G. E.; Buchwald, S. L. Org. Lett. 2002, 4, 973.

(3) For selected examples of Pd-catalyzed C−O cross-couplings, see: (a) Palucki, M.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 10333. (b) Mann, G.; Hartwig, J. F. J. Am. Chem. Soc. 1996, 118, 13109. (c) Vorogushin, A. V.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 8146. (d) Gowrisankar, S.; Sergeev, A. G.; Anbarasan, P.; Spannenberg, A.; Neumann, H.; Beller, M. J. J. Am. Chem. Soc. 2010, 132, 11592. (e) Wu, X.; Fors, B. P.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50, 9943.

(4) For selected recent ether synthesis, see: (a) Shintou, T.; Mukaiyama, T. J. Am. Chem. Soc. 2004, 126, 7359. (b) Maier, T. C.; Fu, G. C. J. J. Am. Chem. Soc. 2006, 128, 4594. (c) Vo, C.-V. T.; Mitchell, A.; Bode, J. W. J. Am. Chem. Soc. 2011, 133, 14082. (d) Molander, G. A.; Colombel, V.; Braz, V. A. Org. Lett. 2011, 13, 1852.

(5) (a) Eberson, L.; Jö nsson, L. Liebigs Ann. Chem. 1977, 233. (b) Stock, L. M.; Vorvick, K. T.; Walstrum, S. A. J. Org. Chem. 1981, 46, 1757. (c) Yoneyama, T.; Crabtree, R. H. J. Mol. Catal., A 1996, 108, 35.

(6) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45, 936.

(7) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074.

(8) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788.

(9) For other selected reviews on Pd-catalyzed C−H functionalizations, see: (a) Xu, L.-M.; Li, B.-J.; Yang, Z.; Shi, Z.-J. Chem. Soc. Rev. 2010, 39, 712. (b) Sehnal, P.; Taylor, R. J. K.; Fairlamb, I. J. S. Chem. Rev. 2010, 110, 824. (c) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011,

The Journal of Organic Chemistry Featured Article **Featured Article Featured Article**

111, 1215. (d) Ackermann, L. Chem. Rev. 2011, 111, 1315. (e) Wencel-Delord, J.; Dröge, T.; Liu, F.; Glorius, F. *Chem. Soc. Rev.* 2011, 40, 4740.

(10) (a) Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300. (b) Desai, L. V.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 9542. (c) Kalyani, D.; Sanford, M. S. Org. Lett. 2005, 7, 4149. (d) Desai, L. V.; Malik, H, A.; Sanford, M. S. Org. Lett. 2006, 8, 1141. (e) Desai, L. V.; Stowers, K. J.; Sanford, M. S. J. Am. Chem. Soc. 2008, 130, 13285. (f) Neufeldt, S. R.; Sanford, M. S. Org. Lett. 2010, 12, 532.

(11) (a) Giri, R.; Liang, J.; Lei, J.-G.; Li, J.-J.; Wang, D.-H.; Chen, X.; Naggar, I. C.; Guo, C.; Foxman, B. M.; Yu, J.-Q. Angew. Chem., Int. Ed. 2005, 44, 7420. (b) Zhang, Y.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 14654. (c) Wang, X.; Lu, Y.; Dai, H.-X.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 12203.

(12) For examples of Pd-catalyzed intermolecular C−H oxygenations, see: (a) Chen, M. S.; Prabagaran, N.; Labenz, N. A.; White, M. C. J. Am. Chem. Soc. 2005, 127, 6970. (b) Wang, G.-W.; Yuan, T.-T.; Wu, X.-L. J. Org. Chem. 2008, 73, 4717. (c) Wang, G.-W.; Yuan, T.-T. J. Org. Chem. 2010, 75, 476.

(13) For selected examples of intramolecular C−H oxygenations, see: (a) Xiao, B.; Gong, T.-J.; Liu, Z.-J.; Liu, J.-H.; Luo, D.-F.; Xu, J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 9250. (b) Wei, Y.; Yoshikai, N. Org. Lett. 2011, 13, 5504. (c) Novak, P.; Correa, A.; Gallardo-Donaire, J.; ́ Martin, R. Angew. Chem., Int. Ed. 2011, 50, 12236.

(14) (a) Jensen, D. R.; Pugsley, J. S.; Sigman, M. S. J. Am. Chem. Soc. 2001, 123, 7475. (b) Ferreira, E. M.; Stoltz, B. M. J. Am. Chem. Soc. 2001, 123, 7725.

(15) During our work, an elegant work on the Pd-catalyzed picolinamide-directed alkoxylation of unactivated $C(sp^3)-H$ with alcohols at 110 °C appeared; see: Zhang, S.-Y.; He, G.; Zhao, X.; Wright, K.; Nack, W. A.; Chen, G. J. Am. Chem. Soc. 2012, 134, 7313.

(16) Boele, M. D. K.; van Strijdonck, G. P. F.; de Vries, A. H. M.; Kamer, P. C. J.; de Vries, J. G.; van Leeuwen, P. W. N. M. J. Am. Chem. Soc. 2002, 124, 1586.

(17) (a) Xiao, B.; Fu, Y.; Xu, J.; Gong, T.-J.; Dai, J.-J.; Yi, J.; Liu, L. J. Am. Chem. Soc. 2010, 132, 468. (b) Xiao, B.; Gong, T.-J.; Xu, J.; Liu, Z.-J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 1466.

(18) For similar oxidative C−H dimerization reactions, see: (a) Hull, K. L.; Lanni, E. L.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 14047. (b) Pintori, D. G.; Greaney, M. F. Org. Lett. 2011, 13, 5713.

(19) Giri, R; Lam, J. K.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 686. (20) (a) Powers, D. C.; Ritter, T. Nat. Chem. 2009, 1, 302. (b) Powers, D. C.; Geibel, M. A. L.; Klein, J. E. M. N.; Ritter, T. J. Am.

Chem. Soc. 2009, 131, 17050.

(21) Anand, M.; Sunoj, R. B. Org. Lett. 2011, 13, 4802.

(22) Ramalingan, C.; Park, Y. T. J. Org. Chem. 2007, 72, 4536. (23) Sun, K.; Li, Y.; Xiong, T.; Zhang, J.; Zhang, Q. J. Am. Chem. Soc.

2011, 133, 1694.

(24) Prakash, G. K. S.; Moran, M. D.; Mathew, T.; Olah, G. A. J. Fluorine Chem. 2009, 130, 806.